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Abstract: In this paper, a class of E-differentiable multiobjective programming problems with both inequality
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1 Introduction
Multiobjective programming, has grown remarkably
in studying the development of optimality conditions.
This is a consequence of the fact that many real world
problems can be modeled as optimization problems
with several objectives conflicting with one another,
that is, by vector optimization problems. Although
the concept of convexity plays a vital real in proving
the fundamental results in optimization theory, how-
ever, not all real life problems can be analyzed as con-
vex multiobjective programming problems. There-
fore, various classes of nonconvex vector optimiza-
tion problems have been defined in optimization lit-
erature. One of such important generalizations of the
convexity notion is the concept of invexity introduced
by Hanson [12]. In the case of differentiable scalar
optimization problems. Namely, Hanson showed that,
instead of the usual convexity assumption, if all func-
tions are assumed to be invex (with respect to the same
function η), then the sufficient optimality conditions
and weak duality can be proved. Over the years, many
generalizations of this concept have been introduced
in the literature (see, for example, [2], [3], [4], [5],
[6], [7], [8], [10], [11], [14], [15], [16], [20], [22],
[23], [24], and others).

Another generalization of convexity was derived
by Youness [25]. Namely, he introduced the defi-
nition of an E-convex set and the definition of an
E-convex function and analyzed some properties of
these nonconvex sets and functions. Moreover, the re-
sults established by Youness [25] were improved by
Yang [26]. Further, Megahed et al. [19] presented the
concept of an E-differentiable convex function which

transforms a (not necessarily) differentiable convex
function to a differentiable function based on the ef-
fect of an operator E : Rn → Rn.

In this paper, a new class of nonconvex E-
differentiable vector optimization problems with both
inequality and equality constraints is considered in
which the involved functions are E-invex. There-
fore, the concept of a so-called E-differentiable E-
invex function for E-differentiable vector optimiza-
tion problems is introduced. Further, under the
introduced E-Guignard constraint qualification, the
so-called E-Karush-Kuhn-Tucker necessary optimal-
ity conditions are established for the considered E-
differentiable vector optimization problems with both
inequality and equality constraints. It is also given an
example of such a vector optimization problems with
E-differentiable E-invex functions for which the E-
Guignard constraint qualification is satisfied but the
E-Abadie constraint qualification is not satisfied. It
turns out that the E-Karush-Kuhn-Tucker necessary
optimality conditions established for such a nons-
mooth vector optimization problem are not satisfied in
such a case. Moreover, the sufficient optimality con-
ditions are derived for the considered E-differentiable
vector optimization problem under E-invexity and/or
generalized E-invexity. This result is illustrated by the
example of nonconvex E-differentiable vector opti-
mization problem in which the involved functions are
E-invex (with respect to the same function η). Thus, in
the present paper, tools of differentiable optimization
problems are used in proving optimality conditions for
(weakly) efficiency of nonsmooth multiobjective pro-
gramming problems.
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2 Preliminaries

Let Rn be the n-dimensional Euclidean space and Rn
+

be its nonnegative orthant. The following convention
for equalities and inequalities will be used in the pa-
per.

For any vectors x = (x1, x2, ..., xn)T and y =

(y1, y2, ..., yn)T in Rn, we define:

(i) x = y if and only if xi = yi for all i = 1, 2, ..., n;

(ii) x > y if and only if xi > yi for all i = 1, 2, ..., n;

(iii) x = y if and only if xi = yi for all i = 1, 2, ..., n;

(iv) x ≥ y if and only if x = y and x , y.

Now, we introduce the definition of an E-invex
set as a generalization of an E-convex set given by
Youness [25] and the definition of an invex set (with
respect to η) given by Mohan and Neogy [22].

Definition 1 Let E : Rn → Rn. A set M ⊆ Rn is said
to be an E-invex set (with respect to η : M ×M → Rn)
if and only if there exists a vector-valued function η :
M × M → Rn such that the relation

E (u) + λη (E (x) , E (u)) ∈ M

holds for all x, u ∈ M and any λ ∈ [0, 1].

Remark 2 If η is a vector-valued function defined by
η(z, y) = z− y, then the definition of an E-invex set re-
duces to the definition of an E-convex set (see Youness
[25]).

Remark 3 If E(a) = a, then the definition of an E-
invex set with respect to the function η reduces to the
definition of an invex set with respect to η (see Mohan
and Neogy [22]).

Now, we present an example of such an E-invex
set which is not E-convex.

Example 4 Let M = [1, 9] ∪ [−9,−1]
and E : R→ R be an operator defined by

E(x) =


x2 if 0 5 x 5 3,
−x if − 3 5 x 5 0,
−1 if x < −3 or x > 3.

and η : M × M → R be defined by

η(E(x), E(u)) =


x − u if x = 0, u = 0,
x − u if x 5 0, u 5 0,
−9 − u if x > 0, u 5 0,
1 − u if x < 0, u = 0.

Then, by Definition 1, M is an E-invex set with respect
to the function η given above. However, it is not E-
convex as can be seen by taking x = 1, u = 4, and
λ = 1

2 , we have

λE (x) + (1 − λ) E (u) = 0 < M.

Hence, by the definition of an E-convex set (see Re-
mark 2), it follows that M is not E-convex.

Now, we present of an example of such an E-
invex set with respect to η which is not invex with
respect to η.

Example 5 Let M = [1, 4] ∪ [−4,−1] and E : R→ R
be an operator defined by

E(x) =

x2 if − 2 5 x 5 2,
−1 if x < −2 or x > 2.

and η : M × M → R be defined by

η(x, u) =

x − u if x 5 u,
−4 − u if x > u.

Then, by Definition 1, M is an E-invex set with respect
to the function η given above. However, it is not invex
with respect to η as can be seen by taking x = −1,
u = 1, and λ = 1

2 , we have

u + λη (x, u) = 0 < M.

Hence, by the definition of an invex set (see Remark
3), it follows that M is not an invex set with respect to
η.

Definition 6 [19] Let E : Rn → Rn and f : M →

R be a (not necessarily) differentiable function at a
given point u ∈ M. It is said that f is an E-
differentiable function at u if and only if f ◦ E is a
differentiable function at u (in the usual sense) and,
moreover,

( f ◦ E) (x) = ( f ◦ E) (u) + ∇ ( f ◦ E) (u) (x − u)

+θ (u, x − u) ‖x − u‖ , (1)

where θ (u, x − u)→ 0 as x→ u.

Now, we introduce a new concept of gener-
alized convexity for E-differentiable vector-valued
functions.
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Definition 7 Let E : Rn → Rn, M ⊆ Rn be an open E-
invex set with respect to the vector-valued function η :
M × M → Rn and f : M → Rk be an E-differentiable
function on M. It is said that f is an E-invex function
with respect to η if, for all x ∈ M,

fi(E(x))− fi(E(u)) = ∇ fi(E(u))η(E(x), E(u)), i = 1, ..., k.
(2)

If inequalities (2) hold for any u ∈ M, then f is E-
invex with respect to η on M.

Remark 8 From Definition 7, there are special cases:

a) If f is a differentiable function and E(x) ≡ x (E
is an identity map), then the definition of an E-
invex function reduces to the definition of an in-
vex function introduced by Hanson [12] in the
scalar case.

b) If η : M × M → Rn is defined by η(x, u) =

x − u, then we obtain the definition of an E-
differentiable E-convex vector-valued function
introduced by Megahed et al. [19].

c) If f is differentiable, E(x) = x and η(x, u) = x−u,
then the definition of an E-invex function reduces
to the definition of a differentiable convex vector-
valued function.

d) If f is differentiable and η(x, u) = x − u, then we
obtain the definition of a differentiable E-convex
function introduced by Youness [25].

Definition 9 Let E : Rn → Rn, M ⊆ Rn be an open E-
invex set with respect to the vector-valued function η :
M × M → Rn and f : M → Rk be an E-differentiable
function on M. It is said that f is a strictly E-invex
function with respect to η if, for all x ∈ M with E(x) ,
E(u), the inequalities

fi(E(x))− fi(E(u)) > ∇ fi(E(u))η(E(x), E(u)), i = 1, ..., k,
(3)

hold. If inequalities (3) are fulfilled for any u ∈
M (E(x) , E(u)), then f is strictly E-invex with re-
spect to η on M.

Now, we present an example of such an E-invex
function which is not E-convex.

Example 10 Let f : R → R be defined by
f (x) = cos x and E : R → R be an operator
defined by E(x) = π

2 − x and η be defined by

η(E(x), E(u)) =


sin u−sin x

cos u if x > u,
0 if x = u,
2 sin x−2 sin u

cos u if x < u.

Then f is E-invex on R, but it is not E-convex as can
be seen by taking x = 0, u = π

4 , and λ = 1
2 , since the

inequality

f (λE (x) + (1 − λ) E (u)) = λ f (E (x))+(1 − λ) f (E (u))

holds. Hence, by the definition of an E-convex func-
tion [25], it follows that f is not E-convex on R.

Now, we give the necessary condition for E-
differentiable E-invexity.

Proposition 11 Let E : Rn → Rn and f : M → Rk

be an E-invex (strictly E-invex) function with respect
to η on M and u ∈ M. Further, assume that f is E-
differentiable at u. Then, the following inequality

∇ f (E (x))−∇ f (E (u)) η (E (x) , E (u)) = 0, (>) (4)

holds for all x, u ∈ M (E(x) , E(u)).

Now, we prove a sufficient condition for an E-
differentiable E-invex function with respect to η.

Theorem 12 Let E : Rn → Rn and f : M → R be
an E-differentiable function at u ∈ M on M. Further,
assume that there exists η : M × M → Rn such that

f (E (u) + λη(E (x) , E (u)) 5 λ f (E (x))+(1 − λ) f (E (u)) ,
(5)

holds for any λ ∈ [0, 1]. Then, f is an E-invex function
with respect to η.

Proof: By (5), we have that the inequality

f (E (u) + λη(E (x) , E (u)) − f (E (u)) 5

λ[ f (E (x)) − f (E (u))] (6)

holds for any λ ∈ [0, 1]. Thus, the above inequality
yields for any λ ∈ [0, 1],

f (E (u) + λη(E (x) , E (u)) − f (E (u))
λ

5

f (E (x)) − f (E (u)) . (7)

By assumption, f is E-differentiable at u. Hence, by
Definition 6, it follows that f ◦E is differentiable at u.
Therefore, letting λ→ 0, we obtain the inequality (2).
ut

Now, we introduce various classes of generalized
E-differentiable E-invex functions as a generalization
of appropriate generalized E-convex functions and,
thus, pseudo-convex and quasi-convex functions.
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Definition 13 Let E : Rn → Rn, M ⊆ Rn be an open
E-invex set with respect to the vector-valued function
η : M × M → Rn and f : M → Rk be an E-
differentiable function on M. It is said that f is a
pseudo E-invex function with respect to η if, for all
x ∈ M and i = 1, ..., k,

fi(E(x)) < fi(E(u)) =⇒ ∇ fi(E(u))η(E(x), E(u)) < 0.
(8)

If (8) holds for any u ∈ M, then f is pseudo E-invex
with respect to η on M.

Definition 14 Let E : Rn → Rn, M ⊆ Rn be an open
E-invex set with respect to the vector-valued function
η : M × M → Rn and f : M → Rk be an E-
differentiable function on M. It is said that f is a
strictly pseudo E-invex function with respect to η if,
for all x ∈ M, x , u, and i = 1, ..., k,

fi(E(x)) 5 fi(E(u)) =⇒ ∇ fi(E(u))η(E(x), E(u)) < 0.
(9)

Note that every strictly pseudo E-invex function
is pseudo E-invex and every E-differentiable pseudo
E-convex function is pseudo E-invex. Also, every
pseudo E-convex function is E-invex and every E-
invex function is pseudo E-invex function for the same
function η, but the converse is not true.

Now, we present an example of such an E-
differentiable pseudo E-invex function which is not
E-invex.

Example 15 Let f : R→ R be defined by f (x) = e
3√x,

η : R × R→ R be defined by

η(x, u) =

 3√x − 3√u if x ≤ u,
10 if x > u.

and E : R → R be an operator defined by E(x) = x3.
Further, assume that ( f ◦ E) (x) < ( f ◦ E) (u). Thus,
we have ( f ◦ E) (x) = ex < eu = ( f ◦ E) (u) . This
implies that x < u for all x, u ∈ R. Moreover, we
have ∇ ( f ◦ E) (u) η (E (x) , E (u)) < 0. Therefore, by
Definition 13, f is an E-differentiable pseudo E-invex
function on R. However, it is not E-invex (with respect
to η) on R. Indeed, if we set x = ln 10, u = 1, then we
have

f (E(x)) − f (E(u)) < ∇ f (E(u))η(E(x), E(u)).

Hence, by Definition 2, it follows that f is not E-invex.

Definition 16 Let E : Rn → Rn, M ⊆ Rn be an open
E-invex set with respect to the vector-valued func-
tion η : M × M → Rn and f : M → Rk be an
E-differentiable function on M. It is said that f is

a quasi-E-invex function with respect to η if, for all
x ∈ M and i = 1, ..., k,

fi(E(x))− fi(E(u)) 5 0⇒ ∇ fi(E(u))η(E(x), E(u)) 5 0.
(10)

If (10) holds for any u ∈ M, then f is quasi-E-invex
with respect to η on M.

Note that E-differentiable quasi E-convex is triv-
ially quasi E-invex and every pseudo E-invex function
is quasi E-invex.

Now, we present an example of such a quasi E-
invex function but not a quasi E-convex function.

Example 17 Let f : R → R be defined by f (x) =

cos x, E : R → R be an operator defined by
E(x) = π

2 − x and η defined by η(E(x), E(u)) =
sin x−sin u

cos u . It can be shown that f is quasi E-invex
on R. Assume that ( f ◦ E) (x) 5 ( f ◦ E) (u). We
have ( f ◦ E) (x) = sin x 5 sin u = ( f ◦ E) (u). This
inequality implies that x 5 u. Hence, we have
∇ ( f ◦ E) (u) η (E (x) , E (u)) = sin x − sin u 5 0.
Therefore, by Definition 16, f is quasi E-invex on R.
Further, it can be shown that f is not quasi E-convex
on R. Assume that ( f ◦ E) (x) 5 ( f ◦ E) (u). We have
( f ◦ E) (x) = sin x 5 sin u = ( f ◦ E) (u). This in-
equality implies that x 5 u. Indeed, if we set x = π

6 ,
u = π

4 , then we have ∇ ( f ◦ E) (u) (E (x) − E (u)) =

cos u(u − x) = 0. Hence, by the definition of quasi E-
convexity, f is not quasi E-convex on R.

3 E-optimality conditions for E-
differentiable multiobjective pro-
gramming

In some cases, the multiobjective programming prob-
lem can be represented as the following unconstrained
vector optimization problem:

minimize f (x) =
(

f1 (x) , ..., fp (x)
)

x ∈ Rn,
(VP)

where f denotes a vector-valued E-differentiable
function on Rn.

Now, we give the definitions of a weak Pareto so-
lution and a Pareto solution of the considered vector
optimization problem (VP).

Definition 18 A feasible point x is said to be a weak
Pareto (weakly efficient) solution of (VP) if and only if
there exists no feasible point x such that

f (x) < f (x).
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Definition 19 A feasible point x is said to be a Pareto
(efficient) solution of (VP) if and only if there exists no
feasible point x such that

f (x) ≤ f (x).

Let E : Rn → Rn be an one-to-one and onto oper-
ator. For the considered multiobjective programming
problem (VP), we define the vector optimization prob-
lem (VPE) as follows

minimize f (E(x)) =
(

f1(E(x)), ..., fp(E(x))
)

x ∈ Rn,
(VPE)

where f ◦ E denotes a vector-valued differentiable
function on Rn.

Now, we give the definitions of a weak Pareto
(weakly efficient) solution and a Pareto (efficient)
solution of the vector optimization problem (VPE),
which are at the same time a weak E-Pareto solution
(weakly E-efficient solution) and an E-Pareto solution
(E-efficient solution) of the considered multiobjective
programming problem (VP).

Definition 20 A feasible point E(x) is said to be a
weak E-Pareto solution (weakly E-efficient solution)
of (VP) if and only if there exists no feasible point E(x)
such that

f (E(x)) < f (E(x)).

Definition 21 A feasible point E(x) is said to be an
E-Pareto solution (E-efficient solution) of (VP) if and
only if there exists no feasible point E(x) such that

f (E(x)) ≤ f (E(x)).

As it is known [6], a characteristic property of a
scalar invex function with respect to η is the fact that
each its stationary point is also its global minimum.
It turns out that this property can be generalized to
the class of vector E-invex functions with respect to
η. For this purpose, we have to define adequately an
E-critical point concept for vector-valued functions.

Definition 22 Let E : Rn → Rn. A point u ∈ Rn is said
to be a vector E-critical point of an E-differentiable
vector-valued function f : Rn → Rk, (or, in other
words, for the problem (VP)) if there exists a vector
λ ∈ Rk with λ ≥ 0 such that λT∇( f ◦ E)(u) = 0.

Now, we prove that every weakly efficient point
is also an E-vector critical point.

Theorem 23 Let E : Rn → Rn and f : Rn → Rk be
an E-differentiable vector-valued function, E(x) be a
weakly E-efficient solution of (VP). Then, there exists
a vector λ ∈ Rk with λ ≥ 0 such that λ

T
∇( f ◦ E)(x) =

0.

Proof: Suppose that λ
T
∇( f ◦ E)(x) , 0. Then, let

d = −∇( f ◦ E)(x). Hence, we obtain

∇( f ◦ E)(x)d = −‖∇( f ◦ E)(x)‖2 < 0. (11)

By assumption, the objective function f , is E-
differentiable at x. Thus, by Definition 6, we get

( f ◦ E) (x) = ( f ◦ E) (x) + ∇ ( f ◦ E) (x)T (x − x)

+θ (x, x − x) ‖x − x‖ . (12)

Using θ (x, x − x) → 0 and x−x
‖x−x‖ → d as x → x to-

gether with (11), we get that the following inequality

( f ◦ E) (x) < ( f ◦ E) (x)

holds, which is a contradiction to the assumption that
E(x) is a weakly E-efficient solution of the vector op-
timization problem (VP). Hence, there exists a vector
λ ∈ Rk with λ ≥ 0 such that λ

T
∇( f ◦ E)(x) = 0. The

proof of this theorem is completed. ut

Now, we prove the converse of the above theorem
using the concept of vectorial E-invexity introduced
in the paper.

Theorem 24 Let E : Rn → Rn, x be a vector E-
critical point of (VP), and let f ◦E be a vector E-invex
function at x with respect to η. Then E(x) is a weak
E-Pareto solution of (VP).

Proof: Let x be a vector E-critical point. Then, there
exists a vector λ ∈ Rk with λ ≥ 0 such that λ

T
∇( f ◦

E)(x) = 0. We proceed by contradiction. Suppose that
E(x) is not a weak E-Pareto solution of (VP). Then,
there exists another point z ∈ Rn such that

( f ◦ E)(z) < ( f ◦ E)(x). (13)

Thus, by E-invexity of f , we get that

f (E(z)) − f (E(x)) = ∇ f (E(x))η(E(z), E(x)). (14)

Combining (13) and (14), we get that the inequality

λT∇( f ◦ E)(x) < 0, for any λ ≥ 0

holds, which is a contradiction to the assumption that
E(x) is a weak E-Pareto solution for (VP). The proof
of this theorem is completed. ut

In general, a vector optimization problem is con-
sidered with the set of inequality and equality con-
straints as follows

minimize f (x) =
(

f1 (x) , ..., fp (x)
)

subject to g j(x) 5 0, j ∈ J = {1, ...,m} ,

ht(x) = 0, t ∈ T = {1, ..., s} ,

(CVP)
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where the functions fi : Rn → R, i ∈ I = {1, ..., p} ,
g j : Rn → R, j ∈ J, ht : Rn → R, t ∈ T , are real-valued
E-differentiable functions defined on Rn.

For the purpose of simplifying our presentation,
we will next introduce some notations which will be
used frequently throughout this paper. We will write
g := (g1, ..., gm) : Rn → Rm and h := (h1, ..., hs) :
Rn → Rs for convenience. Let

Ω :=
{
x ∈ Rn : g j(x) 5 0, j ∈ J, ht(x) = 0, t ∈ T

}
be the set of all feasible solutions of (CVP). Further,
let us denote by J (x), the set of inequality constraint
indices that are active at a feasible solution x, that is,
J (x) =

{
j ∈ J : g j(x) = 0

}
Let E : Rn → Rn be an one-to-one and onto op-

erator. For the considered constrained multiobjective
programming problem (CVP), we define its associated
constrained vector optimization problem (CVPE) with
both inequality and equality constraints as follows

minimize f (E(x)) =
(

f1(E(x)), ..., fp(E(x))
)

subject to g j(E(x)) 5 0, j ∈ J = {1, ...,m} ,

ht(E(x)) = 0, t ∈ T = {1, ..., s} ,

(CVPE)

where the functions fi, i ∈ I, g j, j ∈ J, ht, t ∈
T , are defined in the similar way as for (CVP). We
call (CVPE) the E-vector optimization problem (as-
sociated to the multiobjective programming problem
(CVP)). Let

ΩE := {x ∈ Rn : g j(E(x)) 5 0, j ∈ J,

ht(E(x)) = 0, t ∈ T }

be the set of all feasible solutions of (CVPE).
In [1], Antczak and Abdulaleem established the

following result

Lemma 25 [1] Let E : Rn → Rn be a one-to-one and
onto and

ΩE = {z ∈ Rn :
(
g j ◦ E

)
(z) 5 0, j ∈ J,

(ht ◦ E) (z) = 0, t ∈ T }.

Then E (ΩE) = Ω.

In this section, we derive both necessary and suf-
ficient optimality conditions for a new class of non-
convex multicriteria optimization problems. Namely,
we consider a class of E-differentiable multiobjective
programming problems. Throughout this section, E :
Rn → Rn is assumed to be an one-to-one and onto op-
erator. By Definition 6, the functions constituting the

E-vector optimization problem (CVPE) are differen-
tiable at any its feasible solution (in the usual sense).
Further, we denote by JE (x), the set of inequality
constraint indices that are active at a feasible solu-
tion E(x), that is, JE (x) =

{
j ∈ J :

(
g j ◦ E

)
(x) = 0

}
.

Moreover, it can be proved [1] (see Lemma 26 be-
low) that if x is a (weak) Pareto solution of the E-
vector optimization problem (CVPE), then E (x) is a
(weak) Pareto solution of the original multiobjective
programming problem (CVP). We call E (x) a (weak)
E-Pareto solution of the problem (CVP).

Lemma 26 [1] Let E : Rn → Rn be a one-to-one
and onto and z ∈ ΩE be a weak Pareto (Pareto) solu-
tion of the constrained E-vector optimization problem
(CVPE). Then E (z) is a weak E-Pareto solution (E-
Pareto solution) of the considered constrained multi-
objective programming problem (CVP).

Before we establish the Karush-Kuhn-Tucker
necessary optimality conditions for problem (CVP),
we re-call the Motzkin’s theorem of the alternative.

Theorem 27 [18] (Motzkin’s theorem of the alterna-
tive). Let A, C, D be given matrices, with A being
nonvacuous. Then either the system of inequalities

Ax < 0, Cx 5 0, Dx = 0

has a solution x, or the system

ATy1 + CTy2 + DTy3 = 0, y1 ≥ 0, y2 = 0 (15)

has solution y1, y2 and y3, but never both.

Now, we give the definition of the minimal ele-
ment of a given set (with respect to an order relation).

Definition 28 [17] Let Y be a given set in Rk ordered
by 5 or by <. Specifically, we call the minimal element
of Y defined by ≤ a minimal vector, and that defined by
< a weak minimal vector. Formally speaking, a vector
y ∈ Y is called a minimal vector in Y if there exists
no vector y in Y such that y ≤ y; it is called a weak
minimal vector if there exists no vector y in Y such
that y < y.

Definition 29 Let Y ⊆ Rk. The Bouligand contingent
cone of Y at y ∈ Y is the set TY (y) of all vectors
q ∈ Rk such that there exist a sequence {yn} ∈ Y and a
sequence βn of strictly positive real number such that

lim
n→∞

yn = y, lim
n→∞

βn = 0, lim
n→∞

yn − y

βn
= q.

In other words, the Bouligand contingent cone of Y at
x is defined by

TY (x) = {d ∈ Rn : ∃{λn}⊂Rλn → ∞, ∃{xn}⊂Y xn → x
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s.t. λn (xn − x)→ d}

A vector d ∈ Rn belonging to TY (x) is called a tangent
direction to Y from x ∈ cl Y.

Remark 30 Note that Lin [17] named any Bouligand
contingent vector, that is, any vector q ∈ TY (y), a
convergence vector for the set Y at y.

Now, we extend the result established by Lin [17]
for the E-vector optimization problem (CVPE).

Theorem 31 If x ∈ ΩE is locally (weak) minimal for
f ◦ E on ΩE then no Bouligand contingent vector for
f (E(ΩE)) at y = f (E(x)) is strictly negative.

Definition 32 The tangent cone (also called contin-
gent cone or Bouligand cone) of ΩE at x ∈ cl ΩE is
defined by

TΩE (x) = {d ∈ Rn : ∃{dn}⊂Rndn → d,

∃{tn}⊂Rtn ↓ 0 s.t. x + tndn ∈ ΩE}.

Before we prove the Karush-Kuhn-Tucker neces-
sary optimality conditions for the differentiable con-
strained E-vector optimization problem with inequal-
ity and equality constraint (CVPE), we introduce the
so-called E-Guignard constraint qualification. In or-
der to do this, for the constrained E-vector optimiza-
tion problem (CVPE), we introduce the E-linearized
cone LE (x).

Definition 33 For the constrained E-vector optimiza-
tion problem (CVPE), the E-linearized cone at x ∈
ΩE , denoted by LE (x), is defined by

LE (x) = {d ∈ Rn : ∇g j (E (x)) d 5 0, j ∈ JE (x) ,

∇ht (E (x)) d = 0, t ∈ T }.

It is easy to see that LE (x) is a nonempty closed
convex cone.

The following lemma shows the relationship be-
tween the Bouligand contingent cone TΩE (x) and the
E-linearizing LE (x) cone.

Lemma 34 If x ∈ ΩE is a Pareto solution of the con-
strained E-vector optimization problem (CVPE), then

cl conv TΩE (x) ⊆ LE (x) .

Proof: Let x ∈ ΩE be given and d ∈ TΩE (x). Then, by
Definition 32, there exists a sequence {xn} ∈ ΩE such
that limn→∞ xn = x, limn→∞ βn = 0, limn→∞

xn−x
βn

=

d. By assumption, all constraint functions g j, j ∈ J

and ht, t ∈ T , are E-differentiable at x. Hence, by
Definition 6, it follows that

g j(E(xn)) = g j(E (x)) + ∇g j(E(x))T (xn − x)

+θg j (x, xn − x) ‖xn − x‖ , j ∈ J, (16)

ht(E(xn)) = ht(E (x)) + ∇ht(E (x))T (xn − x)

+θht (x, xn − x) ‖xn − x‖ , t ∈ T, (17)

where θg j (x, xn − x) → 0, j ∈ J, θht (x, xn − x) → 0,
t ∈ T , as xn → x. Assume that dn := xn−x

βn
. Then

xn = x + βndn and we obtain that

g j(E (xn)) = g j(E (x + βndn)) 5 0 = g j(E (x)), j ∈ JE (x) ,
(18)

ht(E (xn)) = ht(E (x + βndn)) = 0 = ht(E (x)), t ∈ T.
(19)

From (18), (19), and Definition 32, it follows that

∇g j (E (x)) d 5 0, j ∈ JE (x) , (20)

∇ht (E (x)) d = 0, t ∈ T . (21)

By (20), (21) and Definition 33, we have

TΩE (x) ⊆ LE (x) .

Since LE (x) is closed and convex, we get

cl conv TΩE (x) ⊆ LE (x) .

ut

Now, we give the so-called E-Abadie constraint
qualification for the E-differentiable vector optimiza-
tion problem (CVP) with both inequality and equality
constraints which was introduced in [1].

Definition 35 It is said that the so-called E-Abadie
constraint qualification (ACQE) holds at x ∈ ΩE
for the differentiable E-vector optimization problem
(CVPE) with both inequality and equality constraints
if

TΩE (x) = LE (x) . (22)

Now, we introduce the so-called E-Guignard
constraint qualification for the E-differentiable con-
strained vector optimization problem (CVP) with both
inequality and equality constraints.

Definition 36 It is said that the so-called E-Guignard
constraint qualification (GCQE) holds at x ∈ ΩE
for the differentiable constrained E-vector optimiza-
tion problem (CVPE) with both inequality and equal-
ity constraints if

cl conv TΩE (x) = LE (x) . (23)
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Now, we present an example of such a nondif-
ferentiable vector optimization problem for which the
E-Guignard constraint qualification is satisfied but E-
Abadie constraint qualification introduced in [1] does
not hold.

Example 37 Consider the following nonconvex non-
differentiable vector optimization problem

minimize f (x) = (2x2 − 2 3
√

x1 , − 3
√

x1x2)

s.t. g(x) = x2 −
3
√

x1 5 0.
(CVP1)

Note that Ω =
{
(x1, x2) ∈ R2 : x2 −

3
√

x1 5 0
}
. Let E :

R2 → R2 be an one-to-one and onto mapping defined
as follows E (x1, x2) =

(
x3

1, x2
)
. For the considered

vector optimization problem (CVP1), we define its as-
sociated E-vector optimization problem (CVPE1) as
follows

minimize f (E(x)) = (2x2 − 2x1 , − x1x2)

g(E(x)) = x2 − x1 5 0.
(CVPE1)

Note that ΩE =
{
(x1, x2) ∈ R2 : x2 − x1 5 0

}
and

x = (0, 0) is a feasible solution. Then, by the
definition of the E-linearized cone, we have that
LE (x) =

{
(d1, d2) ∈ R2 : d2 5 d1

}
. Further, by the

definition of the Bouligand contingent cone, we have
that TΩE (x) =

{
(d1, d2) ∈ R2 : −d1d2 5 0 ∧ d1 = d2

}
.

Therefore, LE (x) = cl conv TΩE (x) , but LE (x) *
TΩE (x) . Hence, the E-Guignard constraint qualifica-
tion is satisfied at x but E-Abadie constraint qualifi-
cation is not satisfied.

Now, we prove the Karush-Kuhn-Tucker neces-
sary optimality conditions for the differentiable con-
strained E-vector optimization problem (CVPE) and,
thus, the so-called E-Karush-Kuhn-Tucker necessary
optimality conditions for not necessarily differen-
tiable constrained multiobjective programming prob-
lem (CVP) in which the involved functions are E-
differentiable and for which the E-Guignard con-
straint qualification holds.

Theorem 38 (E-Karush-Kuhn-Tucker necessary op-
timality conditions). Let x ∈ ΩE be a weak Pareto so-
lution of the constrained E-vector optimization prob-
lem (CVPE) (and, thus, E (x) be a weak E-Pareto solu-
tion of the considered constrained multiobjective pro-
gramming problem (CVP)). Further, let f , g, h be
E-differentiable at x and the E-Guignard constraint
qualification be satisfied at x. Then there exist La-
grange multipliers λ ∈ Rp, µ ∈ Rm, ξ ∈ Rs such that

p∑
i=1

λi∇ ( fi ◦ E) (x) +

m∑
j=1

µ j∇
(
g j ◦ E

)
(x)

+

s∑
t=1

ξt∇ (ht ◦ E) (x) = 0, (24)

µ j

(
g j ◦ E

)
(x) = 0, j ∈ J (E (x)) , (25)

λ ≥ 0, µ = 0. (26)

Proof: By assumption, x ∈ ΩE is a weak Pareto so-
lution in the E-vector optimization problem (CVPE)
(and, thus, E (x) is a weak E-Pareto solution of
the considered multiobjective programming problem
(CVP)). Let d ∈ TΩE (x) and xn be the corresponding
sequence of feasible solutions in E-vector optimiza-
tion problem (CVPE) converging to x and {βn} be the
corresponding sequence of scalars such that βn > 0 for
each integer n converging to 0 (see Definition 32). We
denote by f (E(ΩE)) ⊂ Rk and y = f (E(x)). Since x ∈
ΩE is a weak Pareto point in the E-vector optimiza-
tion problems (CVPE), y = f (E(x)) is a weak min-
imal vector in f (E(ΩE)) (see Theorem 31). Further,
we consider the sequence of vectors {yn} ∈ f (E(ΩE)),
where yn = f (E(xn)). By assumption, the objective
functions fi, i ∈ I, are E-differentiable at x, Thus, by
Definition 6, we have

( fi ◦ E) (xn) − ( fi ◦ E) (x) = ∇ ( fi ◦ E) (x)T (xn − x)

+θi (x, xn − x) ‖xn − x‖ , (27)

where θi (x, xn − x) → 0, i ∈ I, as xn → x. By the
above equality, we obtain, for any i ∈ I,

yn − y

βn
=

1
βn

(( fi ◦ E) (xn) − ( fi ◦ E) (x))

= ∇ ( fi ◦ E) (x)T (xn − x)
βn

+ θi (x, xn − x)
‖xn − x‖
βn

.

(28)

By assumption, {xn} is a sequence of feasible solutions
in the constrained E-vector optimization problems
(CVPE) converging to x. In view of E-differentiability
of the functions fi, i ∈ I, at x, it follows that ( f ◦ E)
is differentiable at x and, hence, it is also a continuous
function at x. Therefore, the sequence {yn} converges
to y = f (E(x)). Hence, by (28), it follows that

q = lim
n→∞

yn − y

βn
= ∇ ( fi ◦ E) (x)T d. (29)

Then, by Definition 32, q is a Bouligand contingent
vector for f (E(ΩE)) at y. From the E-Guignard con-
straint qualification, it follows that d is a Bouligand
contingent vector (convergence vector) for ΩE at x if
and only if d is a solution to the system

∇
(
g j ◦ E

)
(x)T d 5 0, j ∈ J, (30)
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∇ (ht ◦ E) (x)T d = 0, t ∈ T . (31)

Since y is a weak Pareto of f (E(ΩE)), there is
no Bouligand contingent (convergence vector) for
f (E(ΩE)) at y strictly negative (see Theorem 31).
Therefore, the system

∇ ( fi ◦ E) (x)T d < 0, i ∈ I, (32)

∇
(
g j ◦ E

)
(x)T d 5 0, j ∈ J, (33)

∇ (ht ◦ E) (x)T d = 0, t ∈ T . (34)

is inconsistent. From Motzkin’s theorem of the alter-
native (see Theorem 27), it follows that the system

p∑
i=1

λi∇ ( fi ◦ E) (x) +
∑

j∈J(E(x))

ζ j∇
(
g j ◦ E

)
(x)

+

s∑
t=1

ξt∇ (ht ◦ E) (x) = 0,

λ ∈ Rp, λ ≥ 0, ζ ∈ RJ(E(x)), ζ = 0, ξ ∈ Rs

is consistent. Let (λ, ζ, ξ) be a solution to the above
system. Then, we define µ ∈ Rq

+ as follows

µ j = ζ j, j ∈ J (E (x)) ,

µ j = 0, j < J (E (x)) .

Thus, we conclude that (λ, µ, ξ) satisfies the E-
Karush-Kuhn-Tucker necessary optimality conditions
(24)-(26). Hence, the proof of this theorem is com-
pleted. ut

In order to show that the E-Karush-Kuhn-Tucker
necessary optimality conditions cannot be fulfilled
without the E-Guignard constraint qualification, we
present the example of such an E-differentiable vec-
tor optimization problem.

Example 39 Consider the following nondifferen-
tiable vector optimization problem

f (x) = ( f1(x), f2(x)) =(
sin 3
√

x1, cos x2 +
3
√

x2
1

)
→ V- min

g(x) = sin 3
√

x1 − cos x2 5 0,

h(x) = 3
√

x1(π2 − x2) = 0.

(CVP2)

Note that the set of all feasible solutions of the consid-
ered constrained vector optimization problem (CVP2)
is Ω = {(x1, x2) ∈ R2 : sin 3

√
x1−cos x2 5 0, 3

√
x1(π2−

x2) = 0}. Further, note that the functions constitut-
ing problem (CVP2) are nondifferentiable at (0, 0). It

can be shown by Definition 19 that the feasible solu-
tion x = (0, 0) is an E-Pareto solution of the consid-
ered nondifferentiable constrained multiobjective pro-
gramming problem (CVP2).
Let E : R2 → R2 be defined as follows: E (x1, x2) =(
x3

1,
π
2 − x2

)
. For the considered constrained vector

optimization problem (CVP2), we define its associated
constrained E-vector optimization problem (CVPE2)
as follows

f (E(x)) = ( f1(E(x)), f2(E(x))) =(
sin x1, sin x2 + x2

1

)
→ V- min

g(E(x)) = sin x1 − sin x2 5 0,

h(E(x)) = x1x2 = 0.

(CVPE2)

Note that the set of all feasible solutions of the con-
structed constrained E-vector optimization problem
(CVPE2) is ΩE = {(x1, x2) ∈ R2 : sin x1 − sin x2 5
0 ∧ x1x2 = 0} and η(E(x), E(u)) = (2 sin x1, 2 sin x2).
Then, by the definition of the E-linearized cone,
we have that LE (x) =

{
(d1, d2) ∈ R2 : d2 = d1

}
.

Further, by the definition of the Bouligand
contingent cone, we have that TΩE (x) ={
(d1, d2) ∈ R2 : d2 = 0 ∧ d1 5 0 ∧ d1d2 = 0

}
. There-

fore, LE (x) , cl conv TΩE (x) . Hence, the E-
Guignard constraint qualification is not fulfilled at x.
Now, we show that E-Karush-Kuhn-Tucker necessary
optimality conditions are not satisfied at x. Indeed, we
have ∇ ( f1 ◦ E) (x) = [1, 0]T , ∇ ( f2 ◦ E) (x) = [0, 1]T ,
∇ (g ◦ E) (x) = [1,−1]T , ∇ (h ◦ E) (x) = [0, 0]T .
However, note that the E-Karush-Kuhn-Tucker
necessary optimality conditions are not satisfied at
x = (0, 0). Namely, by (24), it follows that λ1 +λ2 = 0,
are fulfilled only in the case when λ1 = 0 and λ2 = 0,
what is impossible.

Definition 40
(
E(x), λ, µ, ξ

)
∈ Ω × Rp × Rm × Rs is

said to be an E-Karush-Kuhn-Tucker point for the
considered constrained vector optimization problem
(CVP) if the E-Karush-Kuhn-Tucker necessary opti-
mality conditions (24)-(26) are satisfied at E(x) with
Lagrange multiplier λ, µ, ξ.

Definition 41
(
x, λ, µ, ξ

)
∈ ΩE × Rp × Rm × Rs is said

to be a Karush-Kuhn-Tucker point for the considered
constrained E-vector optimization problem (CVPE) if
the Karush-Kuhn-Tucker necessary optimality condi-
tions (24)-(26) are satisfied at x with Lagrange multi-
plier λ, µ, ξ.

Now, we prove the sufficiency of the E-Karush-
Kuhn-Tucker necessary optimality conditions for con-
strained vector optimization problem (CVP) under E-
invexity hypotheses.
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Theorem 42 Let
(
x, λ, µ, ξ

)
∈ ΩE × Rp × Rm × Rs

be a Karush-Kuhn-Tucker point of the constrained E-
vector optimization problem (CVPE). Let T +

E (E (x)) ={
t ∈ T : ξt > 0

}
and T−E (E (x)) =

{
t ∈ T : ξt < 0

}
.

Furthermore, assume the following hypotheses are
fulfilled:

a) each objective function f is an E-invex with re-
spect to η at x on ΩE ,

b) each inequality constraint g j, j ∈ J (E (x)), is an
E-invex function with respect to η at x on ΩE ,

c) each equality constraint ht, t ∈ T + (E (x)), is an
E-invex function with respect to η at x on ΩE ,

d) each function −ht, t ∈ T− (E (x)), is an E-invex
function with respect to η at x on ΩE .

Then x is a weak Pareto solution of the problem
(CVPE) and, thus, E(x) is a weak E-Pareto solution of
the problem (CVP).

Proof: By assumption,
(
x, λ, µ, ξ

)
∈ ΩE×Rp×Rm×Rs

is a Karush-Kuhn-Tucker point of the constrained E-
vector optimization problem (CVPE). Then, by Def-
inition 41, the Karush-Kuhn-Tucker necessary opti-
mality conditions (24)-(26) are satisfied at x with La-
grange multipliers λ ∈ Rp, µ ∈ Rm and ξ ∈ Rs. We
proceed by contradiction. Suppose, contrary to the re-
sult, that x is not a weak Pareto solution of the problem
(CVPE). Hence, by Definition 18, there exists another
x̃ ∈ ΩE such that

f (E(x̃)) < f (E (x)) . (35)

Using hypotheses a)-d), by Definition 7 and Theorem
12, the following inequalities

fi (E (x̃))− fi (E (x)) = ∇ fi (E (x)) η (E (x̃) , E (x)) , i ∈ I,
(36)

g j(E (x̃)) − g j(E (x)) =

∇g j (E (x)) η (E (x̃) , E (x)) , j ∈ J (E (x)) , (37)

ht(E (x̃)) − ht(E (x)) =

∇ht (E (x)) η (E (x̃) , E (x)) , t ∈ T + (E (x)) , (38)

−ht(E (x̃)) + ht(E (x)) =

−∇ht (E (x)) η (E (x̃) , E (x)) , t ∈ T− (E (x)) (39)

hold, respectively. Combining (35)-(36) and then
multiplying the resulting inequalities by the corre-
sponding Lagrange multipliers and adding both their
sides, we get p∑

i=1

λi∇ ( fi ◦ E) (x)

 η((E (x̃) , E (x))) < 0. (40)

Multiplying inequalities (37)-(39) by the correspond-
ing Lagrange multipliers, respectively, we obtain

µ jg j(E (x̃)) − µ jg j(E (x)) =

µ j∇g j (E (x)) η (E (x̃) , E (x)) , j ∈ J (E (x)) , (41)

ξtht(E (x̃)) − ξtht(E (x)) =

ξt∇ht (E (x)) η (E (x̃) , E (x)) , t ∈ T + (E (x)) , (42)

ξtht(E (x̃)) − ξtht(E (x)) =

ξt∇ht (E (x)) η (E (x̃) , E (x)) , t ∈ T− (E (x)) . (43)

Using the E-Karush-Kuhn-Tucker necessary optimal-
ity condition (25) together with x̃ ∈ ΩE and x ∈ ΩE ,
we get, respectively,

µ j∇g j (E (x)) η (E (x̃) , E (x)) 5 0, j ∈ J (E (x)) ,
(44)

ξt∇ht (E (x)) η (E (x̃) , E (x)) 5 0, t ∈ T + (E (x)) ,
(45)

ξt∇ht (E (x)) η (E (x̃) , E (x)) 5 0, t ∈ T− (E (x)) .
(46)

Adding both sides of the above inequalities, by (40),
we obtain that the following inequality[ p∑

i=1

λi∇ ( fi ◦ E) (x) +

m∑
j=1

µ j∇g j (E (x))

+

s∑
t=1

µt∇ht (E (x))
]
η (E (x̃) , E (x)) < 0

holds, which is a contradiction to the the E-Karush-
Kuhn-Tucker necessary optimality condition (24). By
assumption, E : Rn → Rn is an one-to-one and onto
operator. Since x is a weak Pareto solution of the
problem (CVPE), by Lemma 26, E (x) is a weak E-
Pareto solution of the problem (CVP). Thus, the proof
of this theorem is completed. ut

Remark 43 As it follows from the proof of Theo-
rem 42, the sufficient conditions are also satisfied if
all or some of the functions g j, j ∈ J (E (x)), ht,
t ∈ T + (E (x)), −ht, t ∈ T− (E (x)) are E-differentiable
quasi E-invex function at x on Ω with respect to η.

Theorem 44 Let
(
x, λ, µ, ξ

)
∈ ΩE × Rp × Rm × Rs

be a Karush-Kuhn-Tucker point of the constrained E-
vector optimization problem (CVPE). Furthermore,
assume that the following hypotheses are fulfilled:

a) each objective function f is strictly E-invex with
respect to η at x on ΩE ,

b) each inequality constraint g j, j ∈ J (x), is an E-
invex function with respect to η at x on ΩE ,
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c) each equality constraint ht, t ∈ T + (E (x)), is an
E-invex function with respect to η at x on ΩE ,

d) each function −ht, t ∈ T− (E (x)), is an E-invex
function with respect to η at x on ΩE .

Then x is a Pareto solution of the problem (CVPE)
and, thus, E (x) is an E-Pareto solution of the problem
(CVP).

Now, under the concepts of generalized E-
invexity, we prove the sufficient optimality conditions
for a feasible solution to be a weak E-Pareto solution
of problem (CVP).

Theorem 45 Let
(
x, λ, µ, ξ

)
∈ ΩE × Rp × Rm × Rs

be a Karush-Kuhn-Tucker point of the constrained E-
vector optimization problem (CVPE). Furthermore,
assume that the following hypotheses are fulfilled:

a) each objective function f is an pseudo E-invex
function with respect to η at x on ΩE ,

b) each inequality constraint g j, j ∈ J (E (x)), is an
quasi E-invex function with respect to η at x on
ΩE ,

c) each equality constraint ht, t ∈ T + (E (x)), is an
quasi E-invex function with respect to η at x on
ΩE ,

d) each function −ht, t ∈ T− (E (x)), is an quasi E-
invex function with respect to η at x on ΩE .

Then x is a weak Pareto solution of the problem
(CVPE) and, thus, E (x) is a weak E-Pareto solution
of the problem (CVP).

Proof: By assumption,
(
x, λ, µ, ξ

)
∈ ΩE × Rp × Rm ×

Rs is a Karush-Kuhn-Tucker point in the considered
constrained E-vector optimization problem (CVPE).
Then, by Definition 41, the Karush-Kuhn-Tucker nec-
essary optimality conditions (24)-(26) are satisfied at
x with Lagrange multipliers λ ∈ Rp, µ ∈ Rm and
ξ ∈ Rs. We proceed by contradiction. Suppose, con-
trary to the result, that x is not a weak Pareto solution
in problem (CVPE). Hence, by Definition 19, there
exists another x̃ ∈ ΩE such that

fi(E(x̃)) ≤ fi (E (x)) , i ∈ I. (47)

By hypothesis (a), the objective function f is E-
differentiable pseudo E-invex at x on ΩE . Then, (47)
gives

∇ ( fi ◦ E) (x) η (E (x̃) , E (x)) < 0, i ∈ I, (48)

By the E-Karush-Kuhn-Tucker necessary optimality
condition (26), inequality (48) yields p∑

i=1

λi∇ ( fi ◦ E) (x)

 η (E (x̃) , E (x)) < 0. (49)

Since E(x̃) ∈ Ω, E(x̃) ∈ Ω , therefore, the E-
Karush-Kuhn-Tucker necessary optimality conditions
(25) and (26) imply

g j(E (x̃)) − g j(E (x)) 5 0, j ∈ J (E (x)) .

From the assumption, each g j, j ∈ J, is an E-
differentiable quasi E-invex function at x on ΩE .
Then, by Definition 16, we get

∇g j (E (x)) η (E (x̃) , E (x)) 5 0, j ∈ J (E (x)) . (50)

Thus, by the E-Karush-Kuhn-Tucker necessary opti-
mality condition (26), and by Definition 16, (50) gives∑

j∈J(E(x))

µ j∇g j (E (x)) η (E (x̃) , E (x)) 5 0.

Hence, taking into account µ j = 0, j < J (E (x)), we
have

m∑
j=1

µ j∇g j (E (x)) η (E (x̃) , E (x)) 5 0. (51)

From x̃ ∈ Ω, x ∈ Ω, x̃ = E(x̃) and x = E (x), we get

ht(E (x̃)) − h j(E (x)) = 0, t ∈ T + (E (x)) , (52)

−ht(E (x̃)) −
(
−h j(E (x))

)
= 0, t ∈ T− (E (x)) . (53)

Since each equality constraint ht, t ∈ T + (E (x)),
and each function −ht, t ∈ T− (E (x)), is an E-
differentiable quasi E-invex function at x on ΩE , then
by Definition 16, (52) and (53) give, respectively,

∇ht (E (x)) η (E (x̃) , E (x)) 5 0, t ∈ T + (E (x)) , (54)

−∇ht (E (x)) η (E (x̃) , E (x)) 5 0, t ∈ T− (E (x)) .
(55)

Thus, (54) and (55) yield[ ∑
t∈T +(E(x))

ξt∇ht (E (x))

+
∑

t∈T−(E(x))

ξt∇ht (E (x))
]
η (E (x̃) , E (x)) 5 0.

Hence, taking into account ξt = 0, t < T + (E (x)) ∪
T− (E (x)), we have

s∑
t=1

ξt∇ht (E (x)) η (E (x̃) , E (x)) 5 0. (56)
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Combining (49), (51) and (56), we get that the follow-
ing inequality

[ p∑
i=1

λi∇ ( fi ◦ E) (x) +

m∑
j=1

µ j∇g j (E (x))

+

s∑
t=1

ξt∇ht (E (x))
]
η (E (x̃) , E (x)) < 0,

which is a contradiction to the E-Karush-Kuhn-
Tucker necessary optimality condition (24). The re-
sult that E(x) is a weak E-Pareto solution follows di-
rectly from Lemma 26. Thus, the proof of this theo-
rem is completed. ut

In order to illustrate the sufficient optimality con-
ditions established in the paper, we now present an ex-
ample of an E-differentiable vector optimization prob-
lem in which the involved functions are (generalized)
E-invex.

Example 46 Consider the following nondifferen-
tiable vector optimization problem

f (x) = ( f1(x), f2(x)) =(
3
√

x1 − cos x2 + 4, 3
√

x1 − cos x2 + 2
)
→ V- min

g1(x) = sin 3
√

x1 − 4 cos x2 + 24
7 5 0,

g2(x) = 2 sin 3
√

x1 + 7 cos x2 + 3
√

x1 − 6 5 0,

g3(x) = 4 3
√

x2
1 + 4(π2 − x2)2 − 9 5 0, (CVP3)

g4(x) = 2 3
√

x1 + 2(π2 − x2) − 3 5 0,

g5(x) = − sin 3
√

x1 5 0,

g6(x) = − cos x2 5 0.

Note that the set of all feasible solutions of the consid-
ered vector optimization problem (CVP3) is

Ω = {(x1, x2) ∈ R2 : sin 3√x1 − 4 cos x2 +
24
7
5 0,

2 sin 3√x1 + 7 cos x2 + 3√x1 − 6 5 0,

4 3
√

x2
1 +4(

π

2
− x2)2−9 5 0, 2 3√x1 +2(

π

2
− x2)−3 5 0,

sin 3√x1 = 0, cos x2 = 0}.

Further, note that the functions constituting prob-
lem (CVP3) are nondifferentiable at

(
0, cos−1 6

7

)
. Let

E : R2 → R2 be an one-to-one and onto map-
ping defined as follows E (x1, x2) =

(
x3

1,
π
2 − x2

)
and

η(E(x), E(u)) = ( sin x1−sin u1
cos u1

, sin x2−sin u2
cos u2

). Now, for
the considered E-invex nondifferentiable constrained

multiobjective programming problem (CVP3), we de-
fine its associated constrained E-vector optimization
problem (CVPE3) as follows

f (E(x)) = ( f1(E(x)), f2(E(x))) =

(x1 − sin x2 + 4, x1 − sin x2 + 2)→ V- min

g1(E(x)) = sin x1 − 4 sin x2 + 24
7 5 0,

g2(E(x)) = 2 sin x1 + 7 sin x2 + x1 − 6 5 0,

g3(E(x)) = 4x2
1 + 4x2

2 − 9 5 0,

g4(E(x)) = 2x1 + 2x2 − 3 5 0,

g5(E(x)) = − sin x1 5 0,

g6(E(x)) = − sin x2 5 0.

(CVPE3)

Note that the set of all feasible solutions of the consid-
ered E-vector optimization problem (CVPE3) is

ΩE = {(x1, x2) ∈ R2 : sin x1 − 4 sin x2 +
24
7
5 0,

2 sin x1 + 7 sin x2 + x1 − 6 5 0, 4x2
1 + 4x2

2 − 9 5 0,

2x1 + 2x2 − 3 5 0, sin x1 = 0, sin x2 = 0}.

and
(
0, sin−1 6

7

)
is a feasible solution of the problem

(CVPE3). Further, note that all functions constituting
the considered vector optimization problem (CVP3)
are E-differentiable E-invex at

(
0, sin−1 6

7

)
. Then, it

can also be shown that the E-Karush-Kuhn-Tucker
necessary optimality conditions (24)-(26) are fulfilled
at

(
0, sin−1 6

7

)
with Lagrange multipliers λ1 + λ2 = 1,

µ2 = 1
7 , and µ5 = 10

7 . Further, it can be proved that
f , g3, and g4 are an E-invex function at x on ΩE , the
constraint function g1, g2 are quasi E-invex at at x on
ΩE , the function g5, g6 are (strictly) pseudo E-invex
at at x on ΩE . Hence, x =

(
0, sin−1 6

7

)
is a Pareto so-

lution of the E-vector optimization problem (CVPE3)
and, thus, E(x) is an E-Pareto solution of the consid-
ered multiobjective programming problem (CVP3).

4 Concluding remarks

In this paper, a new class of nonconvex nondifferen-
tiable vector optimization problems has been defined.
Namely, an E-differentiable multiobjective program-
ming problem with both inequality and equality con-
straint has been considered. Further, the so-called E-
Karush-Kuhn-Tucker necessary optimality conditions
with both inequality and equality constraints under the
introduced E-Guignard constraint qualification have
been established for the considered E-differentiable
vector optimization problem. Moreover, the sufficient
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optimality conditions have been derived for such non-
convex nonsmooth vector optimization problems un-
der the introduced concepts of E-invexity and gener-
alized E-invexity. In order to illustrate the optimality
results established in the paper, the examples of E-
differentiable multiobjective programming problems
have been given.

However, some interesting topics for further re-
search remain. It would be of interest to investigate
whether it is possible to prove similar results for other
classes of E-differentiable vector optimization prob-
lems. We shall investigate these questions in subse-
quent papers.
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